Too Hot

Hyperthermia and heat related illness

Jessie Gehner
M.D. Department of Emergency Medicine
Wilderness Medicine Fellow
Virginia Tech Carilion Clinic
Objectives

● Discuss epidemiology and causes of heat illness
● Review pathophysiology of heat illness
● Determine severity of heat illness from exhaustion to stroke
● Discuss treatment of heat illness
● Prevent heat related illness
Four Methods of Heat Dissipation:

- Conduction
- Convection
- Radiation
- Evaporation
Pathophysiology-

- **Exertional hyperthermia**: heat generated from muscular activity accumulates faster than it can dissipate
- **Heat dissipation**: heat gradient between core and periphery allows cooling when periphery is cooler than core
- **Hot periphery** (environment, exercise, etc) = no heat dissipation
Case:

- 18 year old VMI Cadet presents after 6 mile trail run in September
- Ambient temperature 81 degrees F
- Presents to ED stumbling, diaphoretic, pale, mottled skin, slurred speech, muscle pain
Case:
Vitals:
Core temp: 103F
Heart rate: 122
BP: 90/50
SpO2: 95%

Labs:
Troponin 1.5
LFTs elevated
CK 10,000
Urine: tea colored + myoglobin
Case:

- Skin misted with cool water
- Ice packs over large superficial vessels
- Cooled IV fluids
- Cooling halted when core temp 102F
- Admitted to ICU
- Troponin, Cr, LFTs continued to rise
- Normalized after 1 week
ED/ Hospital Treatment:

HYPERTHERMIA GUIDELINES: use in patients with core temp greater than 40°C (104°F)

- Communicate with EMS to initiate cooling measures in the field
- Obtain a rectal temperature
- Mist with cool water, initiate evaporative cooling with fans (if available)
- Pack ice into axillae, groin and neck overlying large vessels, be sure to protect skin from frostbite
- **Goal of treatment is to reduce the temperature by at least 0.2°C/min to approximately 39°C.**
- Supplemental O2 if needed
- Obtain finger stick glucose and administer D50 as required
- Establish 2 large bore IVs
- Place a 3-way, temperature sensing foley
ED/ Hospital Treatment:

HYPERTHERMIA GUIDELINES: use in patients with core temp greater than 40°C (104°F)

- Send istration chem 8, troponin and other labs and cultures immediately
- Begin cooled (4°C) crystalloid fluid bolus based on fluid status
- Initiate bladder and/or gastric lavage if hyperthermia is unresponsive to other measures
- Obtain 12 lead EKG
- If AMS present, intubate and sedate to lower metabolic demand
- Insert an NGT to monitor for GI bleeding and fluid losses
 (can also be used for cooled fluid irrigation)
HYPERTHERMIA GUIDELINES: use in patients with core temp greater than 40°C (104°F)

- Immediate administration of benzodiazepines in patients with agitation and shivering

- If convulsions are refractory to benzodiazepines and barbiturates should be paralyzed and provided mechanical ventilation with EEG monitoring

- Begin broad spectrum antibiotics once cultures obtained

- Call transfer center to arrange for ICU admission or transfer if warranted

- Active external cooling generally is halted at 39°C
Heat Exhaustion:

- **Symptoms**: fatigue, dizziness, headache, nausea, vomiting, malaise, hypotension, and tachycardia, elevation in body temperature

- Potential for collapse because of an inability to maintain adequate cardiac output

- Can occur with or without exercise in hot environments
Heat Injury:

- Elevation in body temperature +
- Presence of organ or tissue dysfunction that resolves with proper treatment
- Can progress to heatstroke if not properly diagnosed and treated.
- Lack of mental status changes distinguishes heat injury from heat stroke.
Heat Stroke:

- Severe elevation in body temperature
 - typically >40°C, 104°F

- CNS dysfunction:
 - combativeness, delirium, seizures, and coma

- History of exposure
 - hot and humid weather or vigorous physical exertion
Heat Stroke:

- Onset may be gradual (over hours or sometimes days)
- Nonspecific symptoms, similar to heat exhaustion
- May also occur rapidly with no warning signs
- Requires immediate medical intervention to prevent permanent damage
- Neurologic damage, injury to the gut, kidney, lung, spleen, liver, and skeletal muscle (specific to exertion) often occurs within days or weeks of clinical presentation.
Classic Heat Stroke:

- Observed in very young or elderly persons
- Occurs at rest during exposure to high environmental temperature
- Present with hot, dry skin caused by failure of the normal sweating response (anhydrosis)
- Up to 60% of patients with classic heat stroke are hospitalized or found dead within 1 day of the reported onset of illness
Exertional Heat Stroke:

- Occurs primarily in young, physically fit individuals who collapse during exercise.
- Physical effort unmatched to physical fitness is a significant risk factor.
- Anhydrosis is an uncommon finding in these patients.
- Highly motivated individuals may ignore the physiologic signs of fatigue that would normally cause them to stop exercising.
- EHS may occur in temperate conditions because of high physical demand or clothing that inhibits cooling (e.g., firefighter uniforms).
- Mortality relatively low (~3% to 5%) compared with classic heatstroke (~10% to 65%).
Exertional Heat Stroke:

- Occurs primarily in young, physically fit individuals who collapse during exercise
- Physical effort unmatched to physical fitness is a significant risk factor
- Anhydrosis is an uncommon finding in these patients
- Highly motivated individuals may ignore the physiologic signs of fatigue that would normally cause them to stop exercising
- EHS may occur in temperate conditions because of high physical demand or clothing that inhibits cooling (e.g., firefighter uniforms)
- Mortality relatively low (~3% to 5%) compared with classic heatstroke (~10% to 65%)
Prevention:

- Acclimation
- Reduce Exposure time
- Reschedule Events
- Remove Vulnerable Populations
- Adequate hydration

Box 12-3
Heat Acclimation Strategies

Must Mimic Climate of Athletic Event or Occupational Setting and Include Adequate Heat Stress

- Heat must be sufficient to cause heavy sweating.
- Use exercise/rest cycles to intensify or diminish the effect of the heat stress on bodily functions.
- Include at least 6 to 14 days of adequate heat stress.
- Exercise daily for at least 90 minutes.

Start with Acclimation and Exercise Training

- Be flexible in scheduling training.
- Build confidence.
- Performance benefits may take longer to achieve than physiologic benefits.

Methods of Heat Acclimation

- Use a climate-controlled room (sauna or heat chamber) or hot weather.
- Incorporate training by including additional acclimation sessions.

Days Leading to Athletic Performance or Event

- Start slowly, and decrease training duration and intensity; limit heat exposure.
- Acclimatize in heat of the day.
- Train in coolest part of the day.
- Use appropriate work/rest cycles.
- Be vigilant of salt and fluid needs, especially during the first week of acclimation.
Field Treatment:

- Have patient lie down-on cool surface if possible
- Expose skin
- Submerge in cold water if possible
- Moisten skin
- Place in breezy area- in the shade
- Give cold fluids to drink
Questions?

Dr. Jessie Gehner

jrgehner@carilionclinic.org

Carilionwildmed.org
References

