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CHAPTER 1 | INTRODUCTION 

Decarbonization policies that promote renewable energy sources and electric mobility have dual benefits 
– they reduce greenhouse gas (GHG) emissions which contribute to climate change and they reduce 
emissions of conventional air pollutants such as fine particulate matter (PM2.5) that are associated with 
increases in premature mortality and cardiovascular and respiratory morbidity. The State of Virginia 
recently enacted the Virginia Clean Economy Act, which requires nearly all coal-fired power plants to 
close by 2024 and mandates 100 percent renewable energy generation in the state by 2050. The state is 
considering legislation to adopt California’s stringent motor vehicle emissions standards, as allowed 
under Section 177 of the Clean Air Act (42 U.S.C. §7507). Should this legislation pass, Virginia would 
become the 14th state to adopt California’s standards for Low Emission Vehicles (LEVs), greenhouse gas 
(GHG) emissions, and Zero Emission Vehicles (ZEVs), joining Maryland, Delaware and many other 
states in the mid-Atlantic and New England regions. Both of these policy initiatives, along with other 
transportation reforms, would be expected to generate benefits in terms of reduced GHG emissions and 
reduced concentrations of pollutants such as PM2.5.  

Virginia Clinicians for Climate Action (VCCA) is interested in better understanding the public health 
burden of pollutants such as PM2.5 in the state of Virginia. This includes not only the number of premature 
mortalities, hospital admissions, emergency department (ED) visits, and other morbidity impacts 
associated with PM levels, but how those effects may be distributed among different communities in the 
state, including those that are particularly vulnerable or disadvantaged. In addition, they wish to 
understand the contribution of motor vehicles to the overall PM2.5 burden and how policies such as the 
Section 177 LEV and ZEV programs might reduce that burden. In response, IEc, with assistance from 
subcontractor SC&A, has prepared a screening assessment of health burden based on relatively current 
PM2.5 levels in the state and conducted a reduced-form analysis of potential impacts of changes in 
emissions from light duty vehicles on PM2.5 concentrations and related morbidity and mortality impacts in 
the year 2035. 
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CHAPTER 2 | THE HEALTH COSTS OF AMBIENT PM2.5 

Recent concentrations of fine particulate matter in Virginia are expected 
to contribute to 3,000 premature deaths, 3,600 hospitalizations, and 

1,600 emergency department visits on an annual basis.  
This burden amounts to $23 billion in social welfare costs each year, realized through increased 
healthcare costs, reduced labor productivity, and reduced personal wellbeing stemming from adverse 
health effects. The cost of air pollution could be reduced through actions that reduce the emissions of 
PM2.5 and its precursor emissions (e.g., nitrogen oxides, sulfur dioxide, ammonia). The following sections 
provide additional detail on ambient PM2.5 concentrations and PM2.5-attributable health burden in 
Virginia, including impacts specific to the transportation sector. 

TOTAL BURDEN 

Annual mean PM2.5 concentrations have ranged between 6 and 9 µg/m3 at Virginia air quality monitors 
between 2016 and 2018.1 These concentrations, while below the primary U.S. National Ambient Air 
Quality Standard of 12 µg/m3, can still pose significant health risks to Virginia residents. Researchers 
such as Turner et al. (2016), and Di et al. (2017) have continued to observe mortality impacts of fine 
particle exposure over time, even as PM2.5 levels have declined in the U.S. Exhibit 1 presents estimated 
annual mean PM2.5 concentrations in 2018 based on a 2008 modeled 1 km x 1 km air quality surface from 
Goldberg et al. (2019) scaled to 2018 using PM2.5 monitor data in and around Virginia. 

                                                      
1 See the 2018 Virginia Ambient Air Monitoring Data Report at 

https://www.deq.virginia.gov/Portals/0/DEQ/Air/AirMonitoring/2018_Virginia_Ambient_Air_Monitoring_Report.pdf.  

https://www.deq.virginia.gov/Portals/0/DEQ/Air/AirMonitoring/2018_Virginia_Ambient_Air_Monitoring_Report.pdf
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EXHIBIT 1.  ESTIMATED 2018 VIRGINIA PM2 . 5  CONCENTRATIONS 

 
Relative to the dozens of monitoring stations in Virginia, the modeled surface provides substantial spatial 
heterogeneity in concentrations, with notably high pollutant levels in urban areas including Fairfax 
County, the City of Richmond, and much of Southwest Virginia. Using U.S. Environmental Protection 
Agency’s (USEPA’s) BenMAP-CE software, we estimate the adverse health effects associated with the 
ambient PM2.5 concentrations presented above. The resulting PM2.5-attributable health burden associated 
with these concentrations, which include both anthropogenic and non-anthropogenic fine particles, is 
presented in Exhibit 2. 

EXHIBIT 2.  PM2 . 5  ATTRIBUTABLE HEALTH BURDEN IN VIRGINIA ( INCLUDES NON-ANTHROPOGENIC 

PM2 . 5 )  

HEALTH ENDPOINT AGES ANNUAL INCIDENCE 
VALUATION 

(MILLIONS USD 2015$) 

Mortality, Adults 

Estimate 1 (Lepeule et al. 2012) (25+) 25+ 4,800 $35,000 

Estimate 2 (Di et al. 2017) (65+) 65+ 2,000 $15,000 

Estimate 3 (Turner et al. 2016) (30+) 30+ 2,200 $16,000 

Mean of estimates 1 and 3  3,000 $22,000 

Morbidity effects 

Hospitalizations, cardiovasculara 18+ 600 $24 

Hospitalizations, respiratory 65+ 660 $16 

Emergency room visits, asthma All 1,600 $0.68 

Strokeb 65+ 110 $3.1 
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HEALTH ENDPOINT AGES ANNUAL INCIDENCE 
VALUATION 

(MILLIONS USD 2015$) 

Low birth weightc 0 480 $6.5 

New onset asthmad 
0-17, 

35+ (females 
only) 

7,000 $270 

Exacerbated asthmae 6-18 230,000 $12 

Acute bronchitisf 8-12 3,600 $1.6 

Upper respiratory symptomsg 9-11 70,000 $2.2 

Lower respiratory symptomsh 7-14 46,000 $0.91 

Lost work days 18-64 360,000 $66 

Minor restricted activity days (MRADs)i 18-64 2,100,000 $140 

Acute myocardial infarction (non-fatal) 65+ 2,200 $280 

Total $23,000 
a Excludes myocardial infarctions, which are estimated separately. 
b Based on hospital admissions for stroke, ICD-9 codes 430 -436. 
c We define this endpoiont as a child carried to term (37 - 41 weeks gestation) weighing less than 2500 g at birth. EPA (2019b) 
finds evidence of PM2.5 related birth outcomes to be suggestive, but not sufficient to infer a causal relationship at this time. 
d The most recent U.S. EPA Integrated Science Assessment for PM2.5 determined that there is likely to be a causal relationship 
between long-term exposure to PM2.5 and array of respiratory effects, including the incidence of new cases of-asthma. They 
note, “Epidemiologic studies provide strong evidence for effects on lung development, with additional evidence for the 
development of asthma in children due to long-term PM2.5 exposure.” (EPA, 2019b) 
e A worsening of existing asthma cases, including cough, shortness of breath, and wheeze. 
f Acute bronchitis reflects a doctor-diagnosed case of bronchitis. 
g Upper respiratory symptoms include one or more of the following: runny or stuffy nose; wet cough; and burning, aching, or 
red eyes. 
h Lower respiratory symptoms defined as at least two of the following symptoms: cough, phlegm from chest, pain in chest, or 
wheezing. 
i An MRAD is a restricted activity day that does not result in a day of work loss or bed disability but results in minor conditions 
resulting in a reduction of activity. 

PM2.5-attributable health costs are substantial: we estimate thousands of premature deaths, 
hospitalizations, and emergency room visits are caused by pollutant concentrations in Virginia on an 
annual basis. In addition, PM2.5 is linked to thousands of cases of new onset asthma, and hundreds of 
thousands of asthma exacerbations and lost work days. Among the 7,000 estimated cases of new onset 
asthma, roughly 4,000 cases occur in children (ages 0 through 17 years). The economic value of these 
adverse effects totals $23 billion, driven largely by mortality effects. Notably, the Lepeule-derived 
mortality estimate (4,800 premature deaths among adults 25 and older) is significantly larger than the 
estimates from Di et al. (2,000 among adults 65 and older) and Turner et al. (2,200 among adults 30 and 
older). The difference is explained primarily by the stronger association found in the Lepeule et al. (2012) 
study between PM2.5 concentrations and premature death. 

Air pollution related health costs are borne disproportionately by the 
most socially vulnerable communities in Virginia. 

Using the U.S. Centers for Disease Control (CDC) definition of social vulnerability—impacted by factors 
including socioeconomic status, household composition and disability, minority status and language, and 
housing type and transportation options—we stratify our estimates of health burden by Social 
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Vulnerability Index (SVI) quintile. Quintile 1 represents the most vulnerable Census tracts and Quintile 5 
represents the least vulnerable tracts. Exhibit 3 presents the distribution of SVI in Virginia by Census 
tract. We highlight CDC’s data normalizing SVI values to other Census tracts within the state—0.5 
represents the median SVI Census tract in Virginia. 

EXHIBIT 3.  2018 SVI  BY CENSUS TRACT 

 
Using the spatial distribution of SVI (Exhibit 3) and our estimated air pollution related deaths (Exhibit 2), 
we illustrate how these two variables are correlated. For each SVI quintile, we present the statewide air 
pollution attributable mortality incidence in Exhibit 4, expressed in terms of deaths per 100,000 
individuals. Mortality estimates reflect the mean of the three concentration-response functions estimated 
in BenMAP-CE. 
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EXHIBIT 4.  AIR  POLLUTION RELATED DEATHS BY SVI  QUINTILE 

 
Overall, we find a strong inverse relationship between estimated air pollution attributable mortality and 
SVI. That is, mortality incidence associated with air pollution is highest among the most vulnerable 
populations in Virginia. This is observed even though PM2.5 levels are relatively uncorrelated with SVI 
quintile in Virginia. Rather, the trend in Exhibit 4 largely reflects higher baseline mortality rates in the 
more vulnerable SVI quintiles. High baseline rates of death are correlated with variables used to construct 
the SVI, most notably age (most air pollution deaths occur in senior populations) and socioeconomic 
variables. The risk estimates reported in public health studies and used in the BenMAP-CE tool are 
typically measured as proportional to a baseline hazard – that is the size of the impact of a change on an 
exposed population depends in part on the baseline mortality rate in that group.  As a result, the same 
PM2.5 concentration can have a larger impact on a community with higher levels of illness and frailty and 
a higher baseline mortality rate. Conversely, these communities can potentially benefit more than less 
health challenged communities from similar reductions in exposure. Geographically coarse incidence rate 
data for most of the morbidity endpoints we analyzed do not facilitate similar analyses for most other 
health effects in our analysis; however, Exhibit 5 demonstrates how the incremental increase in the 
incidence rate for low birth weight potentially linked to air pollution is highest in the most vulnerable 
quintile.  
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EXHIBIT 5.  AIR  POLLUTION RELATED TERM LOW BIRTH WEIGHT INCIDENCE BY SVI  QUINTILE 

 
Though less pronounced than for mortality, we observe a higher incidence of air pollution attributable low 
weight births among the most vulnerable Census tracts. Combined, these results suggest that air pollution 
controls—when designed thoughtfully—may address existing inequalities in health outcomes by reducing 
the disproportionate burden in vulnerable communities, while also achieving broad-based benefits. We 
note that data limitations may mask greater inequalities. Most notably, the finding that PM2.5 levels are 
not systematically higher in socially vulnerable communities is somewhat surprising. More localized 
urban-scale studies of air quality with finer resolution modeling may illustrate “hot spots” of air pollution 
occurring in poor or otherwise disadvantaged communities (e.g., residences near major roadways) that are 
not captured in our analysis. Additionally, much of our incidence rate data for morbidity effects are at a 
relatively coarse spatial scale, and our analysis could benefit from the use of more refined data from the 
state Department of Health. In the sections that follow, we rely on coarser resolution air quality data. 
While limiting our ability to better characterize environmental justice concerns, these data facilitate 
analyzing the subset of PM2.5 concentrations attributable to the transportations sector. 
 

U.S.  TRANSPORT EMISSIONS  

Emissions from highway vehicles contribute to ambient PM2.5 concentrations and resulting adverse health 
effects in Virginia. Statewide pollutant concentrations include contributions from numerous sources, 
including transportation emissions both within and outside of state boundaries. In many cases, emissions 
from bordering and nearby states mix and travel in the atmosphere, resulting in higher ambient PM2.5 
levels in Virginia. In the state’s more densely populated counties, U.S. highway vehicles are responsible 
for up to 0.5 µg/m3 of ambient PM2.5 levels (5 to 10 percent of the total), as illustrated in Exhibit 6. These 
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county-level estimates, derived using USEPA’s COBRA software, represent 2016 emissions and air 
quality levels. 

EXHIBIT 6.  PM2 . 5  CONCENTRATIONS ATTRIBUTABLE TO U.S.  HIGHWAY VEHICLE EMISSIONS 

 
While these contributions reflect only a fraction of overall PM2.5 concentrations, they still result in a 
measurable transportation-attributable health burden in Virginia. Exhibit 7 summarizes this burden, 
accounting for highway vehicle emissions in and around Virginia. 

EXHIBIT 7.  ADVERSE HEALTH EFFECTS IN VIRGINIA STEMMING FROM U.S.  HIGHWAY VEHICLE 

EMISSIONS 

HEALTH ENDPOINT ANNUAL INCIDENCE 
VALUATION 

(MILLIONS USD 2015$) 

Mortality 

Estimate 1 (Lepeule et al. 2012) 310 $2,400 

Estimate 2 (Di et al. 2017) 130 $1,000 

Estimate 3 (Turner et al. 2016) 140 $1,100 

Mean estimate 190 $1,500 

Morbidity effects 

Hospitalizations, cardiovascular 37 $1.7 

Hospitalizations, respiratory 40 $1.1 

Emergency room visits, asthma 91 $0.045 

Stroke 7.1 $0.24 

Low birth weight* 29 $0.45 

New onset asthma 450 $19 
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HEALTH ENDPOINT ANNUAL INCIDENCE 
VALUATION 

(MILLIONS USD 2015$) 

Exacerbated asthma 5,300 $0.31 

Acute bronchitis 210 $0.10 

Upper respiratory symptoms 3,900 $0.13 

Lower respiratory symptoms 2,600 $0.055 

Lost work days 21,000 $4.2 

Minor restricted activity days 120,000 $8.0 

Acute myocardial infarction (non-fatal) 150 $21 

Total $1,600 

* EPA (2019b) finds evidence of PM2.5 related birth outcomes to be suggestive, but not sufficient to infer a causal relationship 
at this time. 
See Exhibit 2 for notes on other health endpoints. 

In total, transportation sources are responsible for 190 air pollution related premature deaths annually in 
Virginia. The total transportation burden ($1.6 billion) represents roughly 7 percent of the total PM2.5 
attributable burden, and a larger share of the anthropogenic portion of PM2.5 concentrations (currently 
unquantified). 

As with total ambient concentrations, we note that emissions from the transportation sector 
disproportionately impact socially vulnerable communities. The SVI-specific pattern of mortality and low 
birth weight are comparable to the distributions presented for total PM2.5 levels (Exhibits 4 and 5); 
however, the transportation-specific results suffer from coarser resolution data. We note that distributional 
concerns may be heightened for transportation given pollutant corridors near major roadways. In many 
cases, high pollutant concentrations decay rapidly with distance from roadway, requiring highly resolved 
air quality, population, incidence, and demographic data to analyze. 

VA TRANSPORT EMISSIONS  

In the previous section, we presented the health burden associated with U.S. emissions from highway 
vehicles. Absent cooperation with other states and the effects of interstate transport (e.g., Virginia drivers 
crossing into the District of Columbia), Virginia policymakers are primarily able to influence 
transportation emissions within the state. These within-state contributions are presented in Exhibit 8 at the 
county level. 
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EXHIBIT 8.  PM2 . 5  CONCENTRATIONS ATTRIBUTABLE TO VIRGINIA HIGHWAY VEHICLE EMISSIONS 

 
The distribution of PM2.5 concentrations linked to VA highway vehicles is comparable to Exhibit 6, which 
displays the contributions from all U.S. highway vehicles. Transportations sector contributions are highest 
in Richmond, Norfolk, and Northern Virginia. High concentrations are also observed in Roanoke and 
along the I-81 corridor in Western Virginia. By definition, the Virginia contributions represent a subset of 
U.S. contributions. This is most notable in rural counties along the North Carolina border, which are 
likely affected by transportation emissions in and around nearby cities (e.g., Winston-Salem, Greensboro, 
Raleigh, Durham). These counties have significantly reduced transportation contributions to PM2.5 when 
excluding non-Virginia emissions. Nonetheless, the transportation-attributable health burden in Virginia 
is significant when considering emissions within the state. Exhibit 9 presents the health burden estimates 
associated with Virginia transportation emissions. 

EXHIBIT 9.  ADVERSE HEALTH EFFECTS IN VIRGINIA STEMMING FROM VA HIGHWAY VEHICLE 

EMISSIONS 

HEALTH ENDPOINT ANNUAL INCIDENCE 
VALUATION 

(MILLIONS USD 2015$) 

Mortality 

Estimate 1 (Lepeule et al. 2012) 150 $1,200 

Estimate 2 (Di et al. 2017) 61 $490 

Estimate 3 (Turner et al. 2016) 65 $520 

Mean estimate 92 $720 

Morbidity effects 

Hospitalizations, cardiovascular 18 $0.81 
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HEALTH ENDPOINT ANNUAL INCIDENCE 
VALUATION 

(MILLIONS USD 2015$) 

Hospitalizations, respiratory 20 $0.55 

Emergency room visits, asthma 46 $0.022 

Strokes 3.4 $0.12 

Low birth weight* 15 $0.23 

New onset asthma 220 $9.7 

Exacerbated asthma 2,600 $0.16 

Acute bronchitis 110 $0.052 

Upper respiratory symptoms 1,900 $0.066 

Lower respiratory symptoms 1,300 $0.028 

Lost work days 10,000 $2.2 

Minor restricted activity days 58,000 $4.0 

Acute myocardial infarction (non-fatal) 71 $10 

Total $750 

* EPA (2019b) finds evidence of PM2.5 related birth outcomes to be suggestive, but not sufficient to infer a causal relationship 
at this time. 
See Exhibit 2 for notes on each health endpoint. 

The overall health burden of vehicle emissions in Virginia is approximately $750 million per year. This 
represents half of the state-wide burden of vehicle emissions, with the other half originating from vehicles 
outside of the state. Policymakers may view the $750 million estimate as an upper bound on the potential 
annual benefits that may be achieved through particulate matter-focused emissions control actions in the 
transportation sector. Transportation sector policies aimed at lessening emissions of fine particles and 
their precursors will lessen this statewide burden. Controls aimed at reducing ozone and other criteria 
pollution and greenhouse gas emissions related controls may yield benefits additional to those related to 
PM2.5. It is also worth noting that Virginia policymaking in this area may produce benefits for 
neighboring states. 

SUMMARY OF HEALTH BURDEN  

In summary, we highlight the following results from our review of available data and estimation of health 
impacts in the State of Virginia: 

• Annual mean PM2.5 levels observed at air quality monitors in the State of Virginia are recently 
between 6 and 9 µg/m3. Concentrations may exceed these values in “hot spots” near roadways or 
downwind of point sources. 

• 3,000 premature deaths or more may be attributed to ambient PM2.5 levels in the state. 
Transportation emissions nationwide account for 190 of these deaths, with 92 resulting from 
vehicle emissions within the state. 

• Ambient PM2.5 results in significant adverse health effects among children. These effects include 
4,000 cases of new onset asthma, 100,000 instances of respiratory symptoms, and 230,000 asthma 
exacerbations each year. 

• Monetized estimates of social welfare losses from PM2.5 exceed $23 billion annually.  
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• These estimates do not account for the adverse effects of other pollutants, including ozone and 
nitrogen oxides. Greenhouse gases also pose significant health and environmental risks associated 
with climate change. 

• The most vulnerable Census tracts observe PM2.5 attributable mortality incidence rates that are 61 
percent higher than analogous rates in the least vulnerable tracts. 

  



  

   

 14 

 

CHAPTER 3 | THE BENEFITS OF VEHICLE ELECTRIFICATION 

The State of Virginia has proposed legislation to direct the State Air Pollution Control Board to adopt 
California’s stringent motor vehicle emissions standards, as allowed under Section 177 of the Clean Air 
Act (42 U.S.C. §7507). Passage of this legislation would sync Virginia’s vehicle emissions standards 
(currently aligned with Federal standards) with California’s standards for Low Emission Vehicles 
(LEVs), greenhouse gas (GHG) emissions, and Zero Emission Vehicles (ZEVs). In this chapter, we 
illustrate the potential benefits of implementing these standards. We present the benefits in one future 
year, 2035, assuming that vehicle model years 2025-2035 follow the CA standards for the 2025 model 
year. 

ZERO EMISSION VEHICLES PROGRAM 

Virginia’s proposed adoption of the ZEV portion of the Section 177 waiver would reduce ambient PM2.5 
concentrations in the state. We model this adoption by assessing how criteria pollutant emissions and 
resulting PM2.5 levels would change with initial adoption of the California ZEV standards for model year 
2022. Exhibit 10 presents the projected vehicle fleet in 2035 under a business as usual (BAU) and ZEV 
scenario. 

EXHIBIT 10. 2035 VEHICLE MILES TRAVELED (VMT) BY VEHICLE AND FUEL TYPE 

  2035 VMT (MILLION MILES) VMT FRACTION 

VEHICLE TYPE FUEL TYPE BAU ZEV BAU ZEV 

Light duty 

Gasoline 90,921 78,390 88.4% 76.2% 

Diesel 1,715 1,481 1.7% 1.4% 

E-85 3,269 2,808 3.2% 2.7% 

Electricity 140 13,366 0.1% 13.0% 

Heavy duty 

Gasoline 290 290 0.3% 0.3% 

Diesel 6,459 6,459 6.3% 6.3% 

Compressed natural gas 39 39 0.0% 0.0% 

Compared to the negligible vehicle miles traveled by electric vehicles under the BAU scenario (0.1 
percent), we project that ZEVs will represent 13 percent of all vehicle miles in 2035. This effect is driven 
by light duty vehicles (LDVs), with the largest switch from gasoline LDVs to ZEVs. We do not model 
fuel changes within the heavy duty vehicle fleet. Notably, ZEV adoption in the baseline and policy 
scenarios may differ substantially from our assumed projections (0.1 percent and 13 percent, respectively) 
depending on a number of factors that might influence ZEV demand (e.g., ZEV subsidies, scrappage 
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programs). To the extent that the ZEV program leads to greater and more rapid ZEV adoption, greater 
benefits are likely to accrue. 

Two competing factors influence criteria pollutant emissions. First, ZEVs emit near-zero pollution 
relative to internal combustion engines in conventional vehicles.2 Second, ZEVs increase electricity 
consumption in Virginia, resulting in increased emissions from electric generating units (EGUs). In 2035, 
we estimate that ZEV adoption would increase statewide electricity consumption by ZEVs from by a 
factor of 100 (47,535 to 4,544,498 MWH). As detailed in Appendix A, the reduction in tailpipe emissions 
greatly outweighs the marginal effects of increased electric generation. As we illustrate below, this is true 
for every Virginia county. Air quality is expected to improve statewide, even in counties containing 
EGUs. Additionally, we may be overstating additional EGU emissions given Virginia’s recent 
involvement in the Regional Greenhouse Gas Initiative (RGGI), which places a cap on GHG emissions 
across participating Northeast and Mid-Atlantic states.3 

Because of ZEV’s reliance on the electric grid, we model ZEV impacts with and without Virginia’s 
adoption of the Clean Economy Act (CEA), signed into law in April 2020. The law requires cleaner 
energy production in the state: Dominion Energy is required to be 100 percent carbon free by 2045 and 
Appalachian Power to be 100 percent carbon free by 2050. Exhibit 11 illustrates how the 2035 fuel mix 
for electric generation is expected to change in Virginia with the adoption of the CEA. The business as 
usual (BAU) scenario assumes no adoption of the CEA. 

EXHIBIT 11. PROJECTED 2035 VIRGINIA FUEL MIX,  WITH AND WITHOUT CEA ADOPTION 

FUEL 

PERCENTAGE OF VIRGINIA’S FUEL MIX 

BUSINESS AS USUAL 

SCENARIO 

CLEAN ECONOMY ACT 

SCENARIO 

Coal 11% 6% 

Natural gas 55% 28% 

Nuclear 21% 21% 

Renewable sources 13% 45% 

                                                      
2 We do consider brake and tire wear as a source of emissions from ZEVs and conventional vehicles. 

3 Several elements of RGGI present difficulties in modeling emissions changes from EGUs. First, EGUs purchase and trade CO2 allowances to cover 

their emissions. Thus, EGUs are not bound to individual caps and may choose to purchase additional credits to cover, for example, increased 

emissions associated with ZEV electricity demand. Emissions reductions may occur elsewhere in the region. Second, RGGI addresses CO2 emissions. 

While directly-emitted PM2.5 and other PM2.5 precursors are co-pollutants of CO2 at EGUs, these sources may choose to purchase CO2 offset 

allowances that reduce or sequester CO2 or CH4 emissions in the region. Such projects may provide zero or negligible benefits related to 

reductions in emissions of criteria pollutants. Third, RGGI’s cap may be expanded through a Cost Containment Reserve, a mechanism that provides 

additional allowances in instances where allowance prices exceed predefined price thresholds. Such mechanisms have been triggered in recent 

years and are difficult to predict/model. Fourth, RGGI allows for EGUs to bank emissions allowances for future years, again presenting modeling 

difficulties for a given year. Given these limitations and the negligible effects of EGU emissions associated with ZEVs, we do not consider RGGI 

participation in modeling EGU emissions. 
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Overall, we model greater reliance on renewable energy sources with the passage of the CEA relative to a 
no-CEA scenario in 2035. While nuclear power is assumed to comprise a constant 21 percent of the fuel 
mix, coal and natural gas each nearly halve by 2035. Renewable sources are projected to increase from 13 
to 45 percent.  

The PM2.5 emissions resulting from ZEV program adoption is presented in Exhibit 12. While this graphic 
assumes passage of the CEA, the no-CEA results are comparable. 

EXHIBIT 12. 2035 PM2 . 5  REDUCTIONS FROM ZERO EMISSION VEHICLE PROGRAM (WITH CLEAN 

ECONOMY ACT PASSAGE) 

 

Overall, PM2.5 reductions from ZEV program adoption are greatest in urban Virginia counties. The spatial 
distribution closely resembles the overall contributions of transport to PM2.5—areas with higher vehicle 
miles traveled (VMT) are most affected by policies to increase ZEV adoption. We note that ZEV 
adoption is modeled independently of location; however, adoption may be influenced by geographic and 
socioeconomic factors, including charging infrastructure and affordability.  

The estimated health benefits associated with ZEV adoption are summarized in Exhibit 13. These results 
reflect with-CEA conditions (i.e., a cleaner fuel mix for powering electric vehicles). The associated 
results without CEA, located in Appendix D, are comparable.  
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EXHIBIT 13. 2035 PM-RELATED BENEFITS OF ZERO EMISSION VEHICLE PROGRAM ADOPTION, WITH 

CLEAN ECONOMY ACT 

HEALTH ENDPOINT CHANGE IN ANNUAL INCIDENCE 
VALUATION 

(USD 2015$) 

Mortality 

Estimate 1 (Lepeule et al. 2012) 17 $160,000,000 

Estimate 2 (Di et al. 2017) 7.7 $72,000,000 

Estimate 3 (Turner et al. 2016) 7.3 $69,000,000 

Mean estimate 11 $99,000,000 

Morbidity effects 

Hospitalizations, cardiovascular 1.7 $77,000 

Hospitalizations, respiratory 1.8 $56,000 

Emergency room visits, asthma 3.5 $1,700 

Stroke 0.37 $13,000 

Low birth weight* 1.2 $18,000 

New onset asthma 18 $750,000 

Exacerbated asthma 210 $13,000 

Acute bronchitis 8.3 $4,300 

Upper respiratory symptoms 150 $5,500 

Lower respiratory symptoms 110 $2,400 

Lost work days 760 $160,000 

Minor restricted activity days 4,500 $330,000 

Acute myocardial infarction (non-fatal) 6.6 $900,000 

Total $102,000,000 

* EPA (2019b) finds evidence of PM2.5 related birth outcomes to be suggestive, but not sufficient to infer a causal relationship 
at this time. 
See Exhibit 2 for notes on each health endpoint. 

We estimate that adoption of the ZEV program will result in benefits of roughly $102 million in 2035. As 
noted above, these benefits are geographically concentrated in urban areas with higher population and 
vehicle use. Our benefits estimates for 2035 are broadly representative of the annual benefits that may be 
expected in each subsequent year (2036 and beyond) as ZEVs continue to operate in place of gasoline- 
and diesel-powered vehicles. Additionally, greater benefits may be achieved with more ambitious ZEV 
adoption targets. In recent months, the State of California has signaled for an aggressive phase-out of 
gasoline-powered vehicles, with 100 percent ZEV vehicle sales by 2035. Such policies may result in more 
rapid adoption of ZEVs nationally and substantially improve health benefits which could be projected 
under such a scenario. 

Comparing these results with the analogous results from the no-CEA scenario (see Appendix D), we 
observe a slight increase in benefits with CEA passage. This result is due to a cleaner fuel mix used to 
power the additional electric vehicles in 2035. 
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LOW EMISSION VEHICLES PROGRAM 

In this section, we explore the potential benefits of Virginia’s adoption of California’s LEV standards. 
Because the current California LEV standards for criteria pollutants are equivalent to federal standards, 
we anticipate no PM2.5-related health benefits associated with Virginia’s adoption of the LEV program. 
Nonetheless, the LEV scenario is likely to result in significant GHG benefits, pending litigation over 
California’s waiver status. We model Virginia GHG emissions assuming emissions standards under 
California’s “Advanced Clean Car Rules,” a part of the LEV III standards passed in 2012. These 
emissions are compared to emissions under the federal Safer Affordable Fuel-Efficient (SAFE) Vehicles 
rule (EPA 2020), the emissions standards for GHG emissions and fuel economy for model years 2021 
through 2026. We assume that model years 2027-2035 adhere to the more stringent 2026 standards. The 
results of this emissions modeling are presented in Exhibit 14. 

EXHIBIT 14. 2035 VIRGINIA CO2 EMISS IONS BY VEHICLE TYPE AND POLICY SCENARIO 

VEHICLE TYPE 

VEHICLE MILES 

TRAVELED 

(MILLION MILES) 

CO2 EMISSIONS (MILLION TONS) 
PERCENTAGE 

CHANGE IN 

EMISSIONS SAFE 
WITH CA 

WAIVER 

CHANGE IN 

EMISSIONS 

Light duty vehicles 96,045 42.9 37.3 5.6 -12.9% 

Heavy duty vehicles 6,787 11.9 11.9 0.0 0.0% 

Total 102,832 54.8 49.3 5.6 -10.1% 

 
In 2035, we estimate that adoption of the more stringent California GHG LEV standards would reduce 
CO2 emissions by 5.6 million tons, or roughly 10 percent of total vehicle GHG emissions. These benefits 
would accrue annually, with some variation by year due to projected VMT and fleet composition. In 
Exhibit 15, we present the monetized benefits associated with these reductions in CO2 emissions. Tons of 
CO2 are valued using a range of social cost of carbon (SC-CO2) estimates produced by the Interagency 
Working Group on the Social Cost of Greenhouse Gases (2016).4 As described in their 2016 SC-CO2 
update, “the SC-CO2 is the monetized damages associated with an incremental increase in carbon 
emissions in a given year. It is intended to include (but is not limited to) changes in net agricultural 
productivity, human health, property damages from increased flood risk, and the value of ecosystem 
services due to climate change.” Human health impacts could include effects such as increased mortality 
due to more frequent instances of extreme temperatures (see e.g., Schwartz et al. 2015), increased asthma 
ED visits due to increases in aeroallergens (Neumann et al. 2019; Anenberg et al. 2017), and increased 
risks from wildfires and their associated air pollution impacts on health (Ford et al. 2018). We present the 
Working Group’s four recommended SC-CO2 values to reflect the uncertainty in climate impacts and the 
important role of discounting in deriving these values. Three estimates reflect the average SC-CO2 
derived from integrated assessment models using discount rates of 2.5, 3, and 5 percent. The fourth “high 
impact” estimate reflects the marginal damages associated with lower-probability but higher-impact 

                                                      
4 See https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf.  

https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf
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outcomes associated with climate change. We update the SC-CO2 values to 2015 dollars using the 
Consumer Price Index. 

Although there is debate about the appropriate discount rate for the intergenerational impacts of climate 
change, we use 3% for our primary estimate. This discount rate is a commonly employed rate in the 
climate impacts literature (e.g., see Goulder and Williams 2012). This rate is also consistent with the 
consumption rate of interest recommended by federal guidance for benefit cost analysis, known as OMB 
Circular A-4, to capture “the rate at which ‘society’ discounts future consumption flows to their present 
value.” OMB based this rate on the real rate of return on long-term government debt averaged over a 30-
year period prior to the issuance of Circular A-4 (2003).  

EXHIBIT 15. 2035 CLIMATE-RELATED BENEFITS FROM LOW EMISS ION VEHICLE PROGRAM 

ADOPTION 

SC-CO2 BASIS SC-CO2 (2015$) 

CHANGE IN CO2 

EMISSIONS (MILLION 

TONS) 

BENEFITS OF CO2 

REDUCTIONS IN 2035 

(MILLIONS, 2015$) 

2035, 5% d.r. $21 

5.6 

$120 

2035, 3% d.r. $65 $360 

2035, 2.5% d.r. $92 $520 

2035, high impact (95th pct at 3% d.r.) $198 $1,100 

Notes: Benefits estimates are rounded to two significant figures.  

The climate-related benefits from LEV program adoption are substantial. Our central estimate (using a 3 
percent discount rate) suggests that associated CO2 emissions reductions in 2035 will result in $360 
million in benefits. This estimate is accompanied by a wide range of possible outcomes, depending upon 
analytic choices and uncertainty in future climate. Central estimates range from $120 to $520 million 
using discount rates of 5 and 2.5 percent, respectively, while a high impact scenario results in benefits of 
$1.1 billion due to the greater marginal costs associated with GHG emissions. Importantly, these benefits 
estimates are annual – 2034 and 2036 benefits are likely to be similar, with greater benefits accruing as 
LEVs are adopted more extensively. 

SUMMARY 

In summary, we highlight the following results from our analysis of Section 177 adoption in the State of 
Virginia: 

• ZEV program adoption would increase the portion of vehicle miles traveled by ZEVs in 2035 from 
negligible amounts to 13 percent of Virginia’s total. 

• Urban areas in Virginia would primarily benefit from ZEV adoption due to higher baseline 
transport-attributable PM2.5 concentrations in these areas. Rural areas also observe benefits from 
ZEV program adoption. 

• 10 premature deaths may be avoided annually with adoption of the ZEV program and its resulting 
reductions in ambient PM2.5 levels. Additional benefits may accrue in bordering states. 
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• Monetized estimates of the ZEV program suggest annual benefits of $102 million annually. These 
estimates may understate program benefits if ZEV penetration targets exceed our assumed values. 

• LEV program adoption would significantly reduce GHG emissions in Virginia. Relative to a no-
adoption scenario, light-duty vehicle CO2 emissions would fall by 13 percent in 2035. 

• Annual GHG-related benefits from LEV program adoption are likely to range from $120 to $520 
million annually. These benefits may exceed $1 billion annually in lower-probability but higher-
impact climate scenarios. 
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CHAPTER 4 | DISCUSSION 

In this report, we present the results of health benefits analyses aimed at (1) assessing the health burden of 
ambient PM2.5 concentrations in Virginia, (2) estimating the transportation-attributable health burden in 
the state, and (3) quantifying and monetizing the benefits of adopting more stringent vehicle emissions 
standards under Section 177 of the Clean Air Act. 

We find that PM2.5 concentrations are fairly similar throughout much of the state and annual average 
mean levels are generally both below the USEPA national ambient air standard of 12 micrograms per 
cubic meter and below the World Health Organization standard of 10 micrograms per cubic meter.  
Nonetheless, public health research has yet to identify a threshold level of PM2.5 below which no adverse 
health effects have been observed, and thus these levels may still pose health risks to Virginia residents. 
As a result, we estimate a health burden associated with these PM2.5 concentrations, some of which we 
believe may be addressable through effective air quality management efforts.   

We note that higher pollutant levels are observed near urban areas. This spatial pattern is driven, in part, 
by differences in transportation emissions in urban and rural areas. The transportation contribution to 
PM2.5 levels ranges from 0.14 to 0.55 µg/m3 in Virginia counties. Notably, roughly half of all 
transportation-attributable PM2.5 levels originate from vehicle emissions outside of Virginia due to 
pollutant transport in the atmosphere. Similarly, Virginia’s emissions are likely to adversely affect 
bordering states; these impacts are not quantified in this study. 

Using these air quality data, we highlight the human health costs associated with ambient PM2.5 levels in 
Virginia. This burden—amounting to roughly 3,000 premature deaths and $23 billion in monetized costs 
annually—provides rationale for state policymakers to pursue further air quality management actions. 
Additionally, despite the similarities in PM2.5 exposure geographically, underlying baseline health 
disparities contribute to the most vulnerable census tracts taking on a larger share of the estimated health 
burden. Higher concentrations in urban areas also provide more room to broadly improve health in these 
communities. 

The transportation sector is responsible for 5 to 10 percent of the overall PM2.5 health burden. Vehicle 
emissions in Virginia result in $750 million in costs annually. As illustrated with the ZEV policy analysis, 
transportation sector emissions controls may produce significant benefits by reducing this burden. We 
estimate annual benefits of the ZEV program of $102 million in 2035 using an estimate ZEV penetration 
rate equating to 13 percent of Virginia VMT in 2035. Greater penetration of ZEVs would result in greater 
annual benefits. Additional benefits are likely to accrue, including health benefits accruing in bordering 
states and climate-related benefits associated with reduced GHG emissions. Such benefits may be 
sizeable. For example, we estimate that the LEV program reduce light-duty vehicle CO2 emissions would 
13 percent in 2035, resulting in annual benefits between $120 to $520 million. 
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We note several limitations of our analysis. First, we highlight uncertainties with our air quality datasets. 
The 2008 air quality surface from Goldberg et al. (2019) is scaled to 2018 using PM2.5 monitor data in and 
around Virginia. While 2018 data allow us to “anchor” the modeled surface, more recent air quality 
modeling may improve our characterization of PM2.5 exposure. Additionally, finer scale modeling may 
provide insights into potential “hot spots” and their relationship with socially vulnerable tool. The air 
quality modeling used for estimating transport burden and Section 177 impacts (COBRA) is a single 
reduced form tool based on source-receptor matrix estimates. Photochemical modeling is likely to 
produce more robust estimates of changes in air quality due to emissions changes from mobile sources.  

Second, morbidity data in Virginia is geographically coarse. These rates reflect either regional or national 
values and do not vary from county to county. Obtaining more refined estimates from state Health 
Department may elucidate additional variation in health impacts, as is currently possible for mortality 
endpoints. More refined air quality and incidence data may allow analysts to address potential health 
impacts among populations living in close proximity (e.g., within 150 m) of roadways. 

Third, there are multiple ways to define vulnerable populations. For this screening analysis, we applied 
the SVI, and index of vulnerability developed by the CDC. Alternative indices of vulnerability exist, such 
as the SoVI index developed by researchers at the University of South Carolina5, and analysts can 
develop their own definitions, depending on the environmental and sociodemographic features that are 
most relevant to the population being studied. Use of alternative definitions of vulnerable populations 
could yield different results, pending data availability.  

Finally, our analysis does not consider some notable categories of benefits. We focus on PM2.5; benefits 
related to reduced ozone levels are not evaluated, as the complex chemistry of ozone generation is best 
estimated using more time- and resource-intensive photochemical modeling. Additionally, we do not 
estimate benefits to residents outside of Virginia. Due to pollutant transport, air quality management 
actions in Virginia are likely to provide benefits to nearby states. While not the primary focus of this 
report, we also highlight that investment in public transit and more active modes of transportation are 
likely to yield significant health benefits. In addition to reducing emissions of harmful pollutants, walking 
and biking will improve public health, particularly in tandem with LEV and ZEV type programs that 
reduce exposure of pedestrians and cyclists to harmful pollutants resulting from vehicle emissions (see for 
example Pucher et al. 2010)  

Given these limitations, we recommend several next steps for consideration. First, exploring alternative 
air quality surfaces and air quality modeling tools would serve as useful sensitivity analyses. Disparities 
in results may highlight key data gaps and assumptions that could be more closely evaluated. Some air 
quality surfaces (e.g., Van Donkelaar et al. 2016 1 km surface) and reduced form models (e.g., InMAP, 
AP3, USEPA benefit per ton estimates, EASIUR) are readily available and familiar to the IEc team. 

Second, a closer evaluation of vulnerable communities is warranted if improved data are made available. 
Obtaining more refined incidence and air quality data could better inform distributional analysis of 
exposures and risks, e.g., of asthma impacts. Stratifying estimates by relevant socioeconomic indicators 
may also be possible (e.g., by race, age, or income level). 

                                                      
5 http://artsandsciences.sc.edu/geog/hvri/sovi%C2%AE-0 
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Additionally, VCCA may wish to explore the level of effort required for an analysis of ozone impacts. 
Combined with PM2.5, an ozone health benefits analysis would result in a more comprehensive 
understanding of the benefits of air quality management actions. Additional health endpoints and 
epidemiological studies may also be evaluated when considering a second pollutant. 
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APPENDIX A. EMISSIONS MODELING 

The following appendix presents the technical documentation for the emissions modeling discussed in 
this report. In this analysis, we estimate how highway vehicle emissions of criteria air pollutants might 
change if Virginia were to adopt the Section 177 waiver which would allow Virginia to adopt California’s 
emission standards for light-duty vehicles. The California Low Emission Vehicle (LEV) III standards and 
the federal standards for criteria pollutants are essentially aligned by model year 2019, though GHG 
emissions would diverge, with EPA retracting the latest federal GHG standards. However, since 2022 is 
the earliest model year that could be affected if Virginia were to adopt the Section 177 waiver within the 
next year, there would be no emissions impact from the California LEV standards for criteria pollutants. 
However, if Virginia were to adopt the zero-emission vehicle (ZEV) portion of the Section 177 waiver, 
criteria pollutant emissions of these criteria pollutant would be affected. An analysis of the criteria 
pollutant emissions impacts of adopting the California ZEV standards in Virginia starting in model year 
2022 is documented below. 

ONROAD EMISSIONS 

SC&A analyzed onroad emissions from highway vehicles under two scenarios—a baseline and a ZEV 
scenario. The baseline scenario represents emissions that would be caused by highway vehicles traveling 
in Virginia for a projection year of 2035. The ZEV scenario represents likely emissions if Virginia were 
to adopt the ZEV portion of the California vehicle standards. The pollutants included in the analysis are 
oxides of nitrogen (NOx), sulfur dioxide (SO2), ammonia (NH3), particulate matter with an aerodynamic 
diameter of 2.5 microns or less (PM2.5) and volatile organic compounds (VOC). Emissions from vehicle 
exhaust, evaporation, and brake and tire wear are included in the onroad emissions. For vehicles powered 
by electricity, the emissions used to generate the electricity are calculated separately. 

BASELINE SCENARIO –  MOVES INPUTS  

We calculated highway vehicle emissions for this analysis using the US Environmental Protection 
Agency’s (EPA) MOtor Vehicle Emission Simulator (MOVES) model, version MOVES2014b (EPA 
2018). A number of local inputs are required to obtain emission results that reflect the vehicle population 
and activity within a specific county. We obtained the county-level databases containing these MOVES 
inputs that EPA used in developing the 2017 National Emissions Inventory (EPA 2020a). As the MOVES 
model runs can be very time-intensive, EPA uses an approach of using representative counties within a 
state to represent multiple counties in that state with similar vehicle average vehicle ages, fuel 
composition, and other similar characteristics. We then applied emission factors calculated by modeling 
the representative county to activity in the other counties within that county group. Because of the short 
turn-around time for this analysis, SC&A applied this representative county approach for the MOVES 
modeling for Virginia, using the nine representative counties and the mapping of the Virginia counties to 
the representative counties developed by EPA to develop emission factors by vehicle type and fuel type.  
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Starting with the NEI county databases, SC&A updated several inputs to account for differences between 
2017 and 2035. One of the inputs is a distribution of registered vehicles by age for the most recent 30 
vehicle model years, within a vehicle class. While the average age of vehicles within an area generally 
remains stable, spikes often occur in certain years due to economic conditions and other factors. 
Therefore, EPA has created a tool to project these base year local age distributions to distributions for a 
projection year (EPA 2014a). SC&A used this tool to project the 2017 age distributions for the 
representative counties to 2035. 

SC&A used the 2035 default fuel properties provided for the Virginia representative counties within the 
MOVES default database as well as the historical meteorological data (temperature and humidity) 
provided within MOVES. 

Vehicles registered within the Northern Virginia counties that are part of the Washington, DC-MD-VA 
ozone nonattainment area are subject to biennial vehicle emissions inspections (I/M). The data for the I/M 
program in the representative counties from Northern Virginia was updated to 2035 by adjusting the end 
model year of the program in these inputs. These counties were also part of the Ozone Transport 
Commission (OTC) states that adopted the national low emission vehicle (LEV) emission standards 
starting with model year 1999, while the program started nationally in 2001. Thus, the inputs needed to 
model these standards for the 1999 and 2000 model years were included with the representative county 
inputs from Northern Virginia. 

Most counties in Virginia had a small population of electric vehicles in 2017 in the MOVES county input 
databases. For the baseline analysis, we kept the fraction of electric vehicles sold in 2017 as a fraction of 
light duty vehicle sales constant, as a conservative estimate in the baseline. Vehicle miles traveled (VMT) 
is the key activity for highway vehicles. We describe the development of the 2035 VMT inputs separately 
below. 

BASELINE SCENARIO -  VMT 

We used Virginia Department of Transportation’s (VDOT) annual report on vehicle miles traveled 
(VMT) in 2019 in Virginia by county, federal vehicle class, and roadway class (VDOT 2019) as the 
starting point for VMT data. Virginia Department of Environmental Quality (VDEQ) provided data on 
Virginia VMT by county and roadway class with a 2017 base year, and projected using VDOT’s latest 
projections to each year through 2040 (VDEQ 2020). SC&A used this data to calculate the annual growth 
rates from 2019 to 2035 by county and roadway class and then applied these growth rates to the 2019 
VDOT VMT data to obtain 2035 VMT by county, roadway class, and vehicle class. We mapped the 
federal vehicle classes used in the VDOT reporting system to the five Highway Performance Monitoring 
System (HPMS) vehicle types needed for input to MOVES, then summed the resulting 2035 by county 
and HPMS vehicle type for input to MOVES. 

Following the development of all MOVES inputs for the representative counties, SC&A executed the 
MOVES model to develop emission factors for these representative counties in 2035. We mapped the 
resulting emission factors, in units of grams per mile, by representative county, vehicle type, and fuel type 
to all counties being represented by that county. In addition, we multiplied the baseline 2035 VMT for all 
counties in Virginia by the fraction of VMT for each by county and vehicle type, based on the MOVES 
outputs for the representative counties. Then, we multiplied each county’s 2035 VMT by vehicle type and 
fuel type by the vehicle type/fuel type emission factor from the mapped representative county. We 
calculated emissions for NOx, SO2, NH3, PM2.5, and VOC.  
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ZEV SCENARIO 

For the ZEV scenario, the only difference from the inputs discussed above is in the fraction of electric 
vehicles, as modeled in the MOVES avft input file. For the baseline scenario, we modeled the fraction of 
electric vehicles in 2017 for all following model years. For the ZEV scenario, for model years 2022 
through 2035, we set this fraction to 16 percent, the ZEV VMT fraction provided in EPA’s ZEV-AVFT 
generator (EPA 2014b). This applies to light-duty vehicles and trucks. As with the baseline scenario, we 
adjusted the fractions of light-duty vehicles and trucks using gas, diesel, or E-85 proportionally 
downward. We executed the MOVES model using the ZEV avft files for the representative counties and 
emissions calculated in the same manner as discussed for the baseline scenario. 

ELECTRICITY EMISSIONS 

With the adoption of California’s ZEV requirements, Virginia would benefit from the reduction of fuel 
combustion in zero-emission vehicles. However, criteria pollutant emissions from electricity generation 
would be expected to increase in order to supply the electricity needed to power electric vehicles. 
Therefore, SC&A estimated emissions from electric vehicles for both the baseline scenario and the ZEV 
scenario.  

To estimate electricity emissions, we first estimated the electricity consumed by electric vehicles in 
Virginia in 2035. As a MOVES output, we converted the VMT allocated to electric vehicles in both 
scenarios to electricity consumption by multiplying the electric vehicle VMT in each county by a fuel 
efficiency of 34 kilowatt-hours (kWh) per 100 miles traveled. This fuel efficiency is a conservative 
estimate based on the range of fuel efficiency of new electric vehicles currently available (DOE 2020). 
We totaled the estimated electricity consumption from electric vehicles separately for the state for the 
baseline scenario and the ZEV scenario. For both the baseline and ZEV onroad vehicle emissions 
scenarios, we calculated electricity emissions for a Business as Usual (BAU) scenario and a Clean 
Economy Act scenario, as discussed below.  

In order to calculate emissions from electricity generation, we needed the amount of generation by fuel or 
resource. We estimated the projected resource mix or electricity generation by fuel type for the 2035 
electricity BAU Scenario primarily from data in the US Energy Information Administration’s Annual 
Energy Outlook (AEO) 2020 (EIA 2020). Based on the AEO data, Virginia is primarily in two electricity 
market module regions: PJM/Dominion (primarily Dominion Energy) and PJM/West (primarily 
Appalachian Power). The PJM/Dominion region accounts for approximately 85 percent of the population 
in Virginia. The AEO 2020 provides the expected electricity generation by fuel type for each of the 
market module regions for each year through 2050. Using a weighting of 85 percent for the 
PJM/Dominion region and 15 percent for the PJM/West region, the fuel mix expected to be used to 
generate Virginia’s electricity in 2035 is shown in Exhibit A-1, in the column labeled BAU scenario. 

Under Virginia’s Clean Economy Act, signed by Governor Northam in April of 2020, Dominion Energy 
is required to be 100 percent carbon free by 2045 and Appalachian Power to be 100 percent carbon free 
by 2050. Exhibit A-1 shows the expected electricity generation fuel mix by 2035 with the Clean Economy 
Act in place. We estimated this mix by applying the weighted renewable percentage required for 
Dominion and Appalachian Power in 2035, after subtracting out the nuclear energy fraction, which is held 
constant. We applied the remaining fraction of electricity by fuel type proportionally to the fractions in 
the BAU scenario. 
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EXHIBIT A-1.  2035 PROJECTED ELECTRICITY FUEL MIX FOR VIRGINIA AND ELECTRICITY EMISSION 

FACTORS 

FUEL 

BAU SCENARIO 

ELECTRICITY FUEL 

MIX 

CLEAN ECONOMY 

ACT SCENARIO 

FUEL MIX 

NOX ELECTRICITY 

EMISSION FACTOR 

(LB/MWH) 

SO2 ELECTRICITY 

EMISSION FACTOR 

(LB/MWH) 

Coal 11% 6% 1.994 0.512 

Natural Gas 55% 28% 0.186 0.025 

Nuclear 21% 21% 0 0 

Renewable Sources 13% 45% 0 0 

 

Next, we calculated statewide electricity emissions that would be expected to occur to meet the electricity 
demand of the electric vehicles. We obtained emission factors for NOx and SO2 for electricity generation 
in Virginia from EPA’s Emissions & Generation Resource Integrated Database (eGRID) for 2018 
(EPA2020b). The Virginia statewide emission factors from this source are shown in Exhibit A-1. 
Emission factors for PM2.5, NH3, and VOC are not included in eGRID. For this analysis, we estimated 
emission factors for VOC and NH3 by applying the ratio of VOC or NH3 fuel-specific emissions from 
electricity generation in Virginia from EPA’s 2017 NEI to the comparable 2017 Virginia NOx emissions 
and multiplying by the NOx emission factors in Exhibit A-1. We estimated the PM2.5 emission factors 
similarly, but using the ratio of PM2.5 emissions to SO2. We then calculated 2035 electricity emissions by 
multiplying these emissions factors by the corresponding statewide generation by fuel type for each 
combination of the highway vehicle and electricity scenarios. Finally, we allocated the calculated 
statewide electricity emissions proportionally to the baseline electricity emission sources in Virginia from 
the 2028 COBRA database. 

RESULTS 

Exhibit A-2 summarizes the projected 2035 VMT for light-duty vehicles (LDVs) and heavy-duty vehicles 
(HDVs) by fuel type under the baseline and ZEV scenarios along with the corresponding fraction of total 
VMT for each vehicle/fuel type combination. By 2035, with the adoption of the Section 177 waiver, the 
portion of Virginia’s VMT in 2035 expected from electric vehicles increases to approximately 13 percent, 
decreasing the VMT from LDVs fueled by gas, diesel and E-85. The resulting electricity consumption 
used to power these electric vehicles is shown in Exhibit A-3. 
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EXHIBIT A-2.  2035 VMT AND VMT FRACTION BY VEHICLE TYPE AND FUEL TYPE 

VEHICLE TYPE FUEL TYPE 

2035 VMT (MILLION MILES) VMT FRACTION 

BASE 

SCENARIO 

ZEV 

SCENARIO 

BASE 

SCENARIO 

ZEV 

SCENARIO 

LDV Gas 90,921 78,390 88.4% 76.2% 

LDV Diesel 1,715 1,481 1.7% 1.4% 

LDV E-85 3,269 2,808 3.2% 2.7% 

LDV Electricity 140 13,366 0.1% 13.0% 

HDV Gas 290 290 0.3% 0.3% 

HDV Diesel 6,459 6,459 6.3% 6.3% 

HDV CNG 39 39 0.0% 0.0% 

LDV Subtotal  96,045 96,045 93.4% 93.4% 

HDV Subtotal  6,787 6,787 6.6% 6.6% 

Total  102,832 102,832 100.0% 100.0% 

 

 EXHIBIT A-3.  2035 ELECTRICITY CONSUMPTION BY ELECTRIC VEHICLES IN VIRGINIA 

SCENARIO ELECTRICITY CONSUMPTION (MWH) 

Baseline Scenario 47,535 
ZEV Scenario 4,544,498 

Exhibit A-4 summarizes the expected emissions attributable to highway vehicles in Virginia in 2035. The 
first two columns of this table indicate the emissions scenario modeled for vehicles and for electricity, for 
the four possible combinations of vehicle and electricity emissions scenarios.  

EXHIBIT A-4.  2035 VIRGINIA STATEWIDE EMISSIONS BY SCENARIO 

VEHICLE 

EMISSIONS 

SCENARIO 

ELECTRICITY 

EMISSIONS 

SCENARIO 

SOURCE 

2035 EMISSIONS (TPY) 

NOX SO2 NH3 PM2.5 VOC 

Base BAU 

Vehicle Emissions 70,725 356 2,480 2,180 102,851 

Electricity Emissions 7.6 1.7 0.3 0.3 0.3 

Total 70,733 357 2,480 2,180 102,851 

Base Clean Energy 
Act 

Vehicle Emissions 70,725 356 2,480 2,180 102,851 

Electricity Emissions 4.1 0.9 0.2 0.1 0.1 
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VEHICLE 

EMISSIONS 

SCENARIO 

ELECTRICITY 

EMISSIONS 

SCENARIO 

SOURCE 

2035 EMISSIONS (TPY) 

NOX SO2 NH3 PM2.5 VOC 

Total 70,729 357 2,480 2,180 102,851 

ZEV BAU 

Vehicle Emissions 67,191 323 2,181 1,860 95,156 

Electricity Emissions 730.8 159.2 28.9 24.0 24.6 

Total 67,922 482 2,210 1,884 95,181 

ZEV Clean Energy 
Act 

Vehicle Emissions 67,191 323 2,181 1,860 95,156 

Electricity Emissions 390.2 85.7 15.1 12.9 12.9 

Total 67,582 409 2,196 1,873 95,169 

Exhibit A-5 compares the emissions and VMT in both the base and ZEV scenarios by vehicle type. 
All of the emission reductions expected from the ZEV scenario are attributable to light duty 
vehicles (LDVs). This table shows that although heavy-duty vehicles (HDVs) account for only a 
small share of the statewide VMT, their share of emissions for NOx, SO2, and PM2.5 is much 
larger than their VMT share, which tends to dilute the overall emission benefits of the ZEV 
scenario when evaluated in relation to all highway vehicles. 

EXHIBIT A-5.  2035 VIRGINIA VMT AND EMISSIONS BY VEHICLE TYPE 

 SCENARIO HDV LDV TOTAL 
HDV 

FRACTION 

LDV 

FRACTION 

VMT (million miles) Base and ZEV 6,787 96,045 102,832 6.60% 93.40% 

NOx (tpy) 
Base 31,268 39,458 70,725 44.2% 55.8% 
ZEV 31,268 35,924 67,191 46.5% 53.5% 

SO2 (tpy) 
Base 99 257 356 27.8% 72.2% 
ZEV 99 224 323 30.6% 69.4% 

NH3 (tpy) 
Base 244 2,235 2,480 9.8% 90.2% 
ZEV 244 1,937 2,181 11.2% 88.8% 

PM2.5 (tpy) 
Base 379 1,801 2,180 17.4% 82.6% 
ZEV 379 1,481 1,860 20.4% 79.6% 

VOC (tpy) 
Base 5,126 97,725 102,851 5.0% 95.0% 
ZEV 5,126 90,030 95,156 5.4% 94.6% 

 

SECTION 177 VEHICLE GREENHOUSE GAS EMISS IONS ANALYSIS  

In January 2012, the California Air Resources Board (CARB) approved greenhouse gas (GHG) emission 
regulations for MY 2017-2025 light-duty vehicles. The regulations were part of the “Advanced Clean Car 
Rules” that also included the LEV III emission standards for criteria air pollutants and ZEV regulations. 
The GHG emission regulation was aligned with the federal GHG emissions and fuel economy for model 
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year 2017 through 2025 light-duty vehicles and trucks proposal by the EPA and the National Highway 
Traffic Safety Administration (NHTSA). When the federal model years 2017-2025 GHG regulation 
became finalized in August 2012 (EPA 2012), CARB adopted regulatory provisions to the effect that 
vehicles meeting federal GHG emission standards for model years 2017-2025 are “deemed to comply” 
with California standards. This approach provided manufacturers a convenient option to comply with one 
set of rules nationwide. 

EPA and the National Highway Traffic Safety Administration (NHTSA) revoked the waiver for 
California’s light-duty vehicle GHG standards on September 27, 2019 (EPA 2019a) and then issued a rule 
finalized in 2020 known as the Safer Affordable Fuel-Efficient (SAFE) Vehicles rule (EPA 2020c). This 
SAFE Vehicles rule revises the greenhouse gas (GHG) and Corporate Average Fuel Economy (CAFE) 
standards for light-duty vehicles and trucks for model years 2021 through 2026. The EPA/NHTSA action 
revoking California’s waiver is currently before the US Court of Appeals for the DC Circuit, and a written 
briefing is underway but no oral argument has yet been scheduled. Without the waiver in effect, vehicles 
throughout the country, including those in California and Section 177 states are subject to the less 
stringent CO2 emission standards and fuel economy standards of the SAFE Vehicles rule. 

ANALYSIS OF ONROAD EMISSIONS IN  VIRGINIA 

As a result of the above, the current CO2 LDV emissions in Virginia for model years 2021-2025 and 
beyond are those proscribed within the SAFE Act. The required CO2 emission rates under this 
regulation are less stringent than those under the 2012 regulation. The California waiver revocation would 
need to be reversed before Virginia could implement the more stringent GHG emission standards. This 
analysis examines the potential CO2 emission reductions that could occur in Virginia in 2035 if the 
California GHG waiver were reinstated and Virginia were to adopt the Section 177 waiver for these GHG 
standards.  

The baseline in this analysis are the CO2 emissions that would be expected to occur under the SAFE rule. 
Exhibit A-6 summarizes the fleetwide CO2 emission requirements by model year under the SAFE rule.  

EXHIBIT A-6.  2020 SAFE RULE ESTIMATED FLEETWIDE FINAL CO2 EMISSION REQUIREMENTS 

VEHICLE CATEGORY 

MODEL YEAR 

2021 2022 2023 2024 2025 2026 

Passenger cars (CO2, g/mi) 183 180 177 174 171 168 

Light trucks (CO2, g/mi) 264 259 255 251 247 243 

 
The reduced GHG emission scenario represents the expected 2035 emissions in Virginia with the 2012 
CO2 emission standards reinstated in California and adopted by Virginia via Section 177. Exhibit A-7 
shows the projected fleet-wide CO2 emission compliance levels under the original 2012 rule.  
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EXHIBIT A-7.  2012 RULE FLEETWIDE CO2 EMISS ION STANDARDS 

VEHICLE CATEGORY 

MODEL YEAR 

2021 2022 2023 2024 2025 2026 

Passenger cars (CO2, g/mi) 172 164 157 150 143 143 

Light trucks (CO2, g/mi) 249 237 225 214 203 203 

 
The current version of EPA’s MOVES model, version MOVES2014b (EPA 2018), includes the 
provisions of the 2012 GHG standards. Therefore, this represented the controlled or Section 177 GHG 
scenario. We calculated CO2 emissions for Virginia in the same manner as discussed for the criteria 
pollutant analysis, but with output at the model year level. We then calculated CO2 emission rates by 
model year for each representative county, vehicle category, and fuel type. We adjusted these emission 
rates by the ratio of the SAFE CO2 standards to the ratio of the corresponding 2012 rule CO2 standard. 
We multiplied these revised SAFE emission standards by the VMT at the county, vehicle category, and 
fuel type level for all counties in Virginia to develop an estimate of emissions statewide under the SAFE 
rule. We assumed emissions prior to the 2021 model year to be the same in both scenarios, and assumed 
the 2026 standards from Exhibits A-6 and A-7 to apply to model years 2027 through 2035. 

Exhibit A-8 summarizes the projected 2035 VMT and CO2 emissions under the baseline scenario with the 
SAFE rule in effect and under a scenario where California’s GHG waiver is reinstated and Virginia 
adopts the Section 177 waiver for GHGs.  

EXHIBIT A-8.  2035 VIRGINIA CO2  EMISSIONS UNDER SAFE AND WITH A SECTION 177 GHG WAIVER 

VEHICLE TYPE VMT (MILLION MILES) 
CO2 EMISSIONS (TPY) 

UNDER SAFE 

CO2 EMISSIONS (TPY) 

WITH CA WAIVER 

PERCENTAGE CHANGE 

IN EMISSIONS 

LDV 96,045 42,880,673 37,343,508 12.9% 
HDV 6,787 11,928,461 11,928,461 0.0% 
Total 102,832 54,809,135 49,271,969 10.1% 

  



  

   

 1 

 

APPENDIX B. AIR QUALITY MODELING 

EPA’s Co-Benefits Risk Assessment Health Impacts Screening and Mapping tool (COBRA) provides 
screening-level, reduced-form estimates of how changes in air pollution emissions will impact ambient air 
quality, and can further translate the air quality change into health effect burden and valuation (EPA 
2020). COBRA provides baseline emissions of multiple pollutants (NO2, SO2, NH3, SOA, PM2.5, and 
VOCs) for multiple years (2016, 2023, and 2028). It further allows users to develop scenarios by 
modifying emissions across 14 categories (called “tiers”) to model how these changes affect air quality. 
COBRA then calculates changes in air quality between the baseline scenario and the control scenario 
using a source-receptor matrix to translate the various pollutant emissions changes into ambient PM2.5 
concentrations. We use COBRA to generate air quality surfaces of ambient PM2.5 concentrations (in 
μg/m3) under multiple policy scenarios across the state of Virginia, at the county level. We used 
BenMAP-CE for further health benefits analysis, rather than COBRA’s screening tool, for a more 
spatially-resolved analysis and for use of supporting datasets. 

BURDEN ANALYSIS  

We first use COBRA to determine the burden of the transport sector on overall air quality in Virginia. 
Using COBRA’s built in emissions inventory for 2016 as a baseline, we zeroed all emissions in Tier 11 
(“highway vehicles”) within the state of Virginia, and ran the resulting emissions inventory through 
COBRA to yield an air quality surface. We repeated this process, zeroing all highway vehicle emissions 
for the country as a whole in 2016, to account for emissions outside of Virginia that impact Virginia’s air 
quality.  

SECTION 177 ANALYSIS  

We also use COBRA to set up various analyses regarding the adoption of California’s vehicle emissions 
standards under Section 177 of the Clean Air Act. We set up four emissions scenarios in Virginia, 
described below: 

1. Baseline scenario (no Section 177 adoption) without Clean Economy Act (CEA) adoption 

2. Zero Emissions Vehicle (ZEV) scenario without CEA adoption 

3. Baseline scenario with CEA adoption 

4. ZEV Scenario with CEA adoption 

These scenarios are described in more detail in Appendix A. Vehicle emissions data provided by SC&A 
were modeled for the year 2035 and include highway vehicle emissions and electricity emissions 
associated with powering electric vehicles via electric generating unit deltas across different scenarios. 
We used these datasets to substitute COBRA’s 2028 inventory baseline Tier 11 (“highway vehicle”) 
emissions and adjust a subset of Tier 1 (“Fuel Combustion: Electric Utility”) emissions in Virginia. 
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To model changes in PM2.5 concentrations resulting from Virginia adoption Section 177, we ran two 
scenarios through COBRA modeling emission changes under the Section 177 ZEV scenario compared to 
the baseline: the first assumes no CEA adoption; the second assumes CEA adoption. We used the 
COBRA outputs of these two runs to generate resulting health burden associated with adopting Section 
177 in Virginia. 

 

  



  

   

 1 

 

APPENDIX C. HEALTH BENEFITS ESTIMATION 

The following appendix describes the methodology for calculating the health impacts and economic 
values of air quality and changes in air quality in Virginia. In total we performed five health benefits 
analyses:  

1. The total health burden of current PM2.5 concentrations in Virginia; 

2. The health burden of US transport emissions; 

3. The health burden of Virginia transport emissions; 

4. The benefit of adopting the ZEV vehicle regulations without adopting the CEA; and 

5. The benefit of adopting the ZEV vehicle regulations and the CEA. 

For these analyses, we use the USEPA’s Environmental Benefits Mapping and Analysis Program – 
Community Edition (BenMAP-CE) version 1.5.2.0, an open-source program employed by USEPA for 
their regulatory impact analyses. The remainder of this appendix provides an overview of our approach, 
including our data sources for key inputs such as population, baseline incidence rates, and concentration-
response functions from the epidemiological literature. Finally, we provide an overview of our valuation 
approach. 

OVERVIEW OF APPROACH 

We use BenMAP-CE to estimate the impact of PM2.5 concentrations on morbidity and mortality health 
endpoints by assessing the difference in the risk of those endpoints under the baseline and control (i.e., 
policy) scenarios. BenMAP-CE relies on health impact functions to quantify the change in incidence of 
adverse health impacts stemming from changes in ambient pollutant concentrations: 

∆𝑦𝑦 =  𝑦𝑦𝑜𝑜 ∙ �1 − 𝑒𝑒−𝛽𝛽∙∆𝑃𝑃𝑃𝑃� ∙ 𝑃𝑃𝑃𝑃𝑃𝑃 

where ∆𝑦𝑦 is the change in the incidence of the adverse health effect, 𝑦𝑦𝑜𝑜 is the baseline incidence rate for 
the health effect, beta (𝛽𝛽) is a coefficient derived from a relative risk (RR) estimate associated with a 
change in exposure (i.e., pollutant concentration) as expressed in concentration-response functions, ∆𝑃𝑃𝑃𝑃 
is the change in concentrations of fine particulate matter, and Pop is the exposed population.6  

DATA INPUTS 

We draw upon multiple data sources to parameterize and implement the generic health impact function 
presented above. These data sources are described below. 

                                                      
6 Based upon the functional form of the underlying concentration-response function, the functional form of the health impact function may differ. 

∆𝑃𝑃𝑃𝑃 may also be replaced by concentrations of other pollutants (e.g., ozone) or conditions (e.g., temperature).  
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POPULATION 

For the transport burden analyses (bullets two and three above), we rely upon the 2010 Census tract 
population data, disaggregated by age, gender, race and ethnicity. We use the Woods and Poole (2015) 
county-level forecasts, developed by age, gender, race and ethnicity, to project the census tract population 
through the year 2050 (see the BenMAP-CE User Manual for details on the Woods and Poole (2015) 
methods). We use the 2016 projected census tract population as the final input for the transport burden 
analyses. 

For the total health burden (bullet one above), we also use the 2010 Census tract population data, 
however, the air quality surface for this assessment is specified using a 1 km by 1 km grid. We used R 
and ArcGIS to generate a 1 km population dataset from the census tract population using the area-
weighted distribution of the census tract grids. To reduce file size, we aggregate the population across 
race and ethnicity, leaving the population disaggregated only by age and gender. As a result, we cannot 
apply the Woods and Poole (2015) county-level forecasts, and use the 2010 1 km population as the final 
input for the total burden analysis. 

For the ZEV benefits analysis, with and without CEA adoption (bullets four and five above), we use the 
2035 county-level population data built into BenMAP-CE. These data reflect 2010 Census count 
population estimates projected using Woods and Poole values. 

BASELINE INCIDENCE 

We rely primarily upon the morbidity and mortality incidence data built into BenMAP-CE (see the 
BenMAP-CE User Manual for details on BenMAP-CE datasets). This includes: the 2014 county-level 
incidence rates for hospitalizations and emergency department visits; the 2000 county-level incidence 
rates for acute bronchitis and work loss days; the 2008 national prevalence rates of asthma (for asthma 
exacerbation endpoints) and upper respiratory symptoms; and the 2020 county-level mortality incidence 
rates.  

There are three incidence health endpoints which do not have incidence data incorporated into the 
BenMAP-CE configuration, stroke, new onset asthma, and low term birth weight. We derive stroke 
national annual incidence rates from Yao et al. (2019), which analyzes the temporal trends in rates of first 
stroke hospitalization and 30-day mortality between Black and White Medicare enrollees. We derive new 
onset asthma national annual incidence rates from Winer et al. (2012), which estimates the incidence of 
asthma in children and adults from the Behavioral Risk Factor Surveillance System Asthma Call-Back 
Survey (BRFSS ACBS). For new onset asthma endpoint, we also incorporate the 2018 National Health 
Interview Survey (NHIS) prevalence of asthma to ensure that the concentration-response function is 
applied only to the portion of the population that does not already suffer from asthma. We develop the 
term low birth weight incidence from 2017 Virginia county-level birth, pre-term birth, and low birth 
weight rates provided by the Virginia Department of Health. 

CONCENTRATION-RESPONSE FUNCTIONS 

We utilize morbidity and mortality health impact functions for our benefits analyses. We use a subset of 
the USEPA standard morbidity functions pre-loaded into BenMAP-CE that are considered to be ‘core’ 
health impact functions used in USEPA regulatory analyses. We subset the standard functions using the 
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.cfgx and .apvx BenMAP-CE configuration files available on the USEPA website.7 We also include five 
health impact functions developed for the incidence endpoints of stroke, new onset asthma, and term low 
birth weight.  Additional detail on the low birth weight endpoint is provided below. Exhibit C-1 lists the 
full set of 55 functions used in our analyses. 

EXHIBIT C-1.  HEALTH IMPACT FUNCTIONS 

AUTHOR YEAR ENDPOINT GROUP AGE RANGE 

Dockery et al. 1996 Acute Bronchitis 8-12 
Ostro and Rothschild 1989 Minor Restricted Activity Days 18-64 
Mar et al. 2004 Asthma Exacerbation, Cough 6-18 
Ostro et al. 2001 Asthma Exacerbation, Cough 6-18 
Mar et al. 2004 Asthma Exacerbation, Shortness of Breath 6-18 
Ostro et al. 2001 Asthma Exacerbation, Shortness of Breath 6-18 
Ostro et al. 2001 Asthma Exacerbation, Wheeze 6-18 
Mar et al. 2010 Emergency Room Visits, Asthma 0-99 
Slaughter et al. 2005 Emergency Room Visits, Asthma 0-99 
Moolgavkar 2000 Hospital Admissions, Chronic Lung Disease 18-64 
Moolgavkar 2000 Hospital Admissions, All Cardiovascular  

(less Myocardial Infarctions) 
18-64 

Bell et al. 2008 Hospital Admissions, All Cardiovascular  
(less Myocardial Infarctions) 

65-99 

Peng et al. 2008 Hospital Admissions, All Cardiovascular  
(less Myocardial Infarctions) 

65-99 

Peng et al. 2009 Hospital Admissions, All Cardiovascular  
(less Myocardial Infarctions) 

65-99 

Zanobetti et al. 2009 Hospital Admissions, All Cardiovascular  
(less Myocardial Infarctions) 

65-99 

Zanobetti et al. 2009 Hospital Admissions, All Respiratory 65-99 
Sheppard 2003 Hospital Admissions, Asthma 0-64 
Schwartz and Neas 2000 Lower Respiratory Symptoms 7-14 
Pope et al. 1991 Upper Respiratory Symptoms 9-11 
Ostro 1987 Work Loss Days 18-64 
Kloog et al. 2012 Hospital Admissions, All Respiratory 65-99 
Glad et al. 2012 Emergency Room Visits, Asthma 0-99 
Peters et al. 2001 Acute Myocardial Infarction, Nonfatal 18-24 
Peters et al. 2001 Acute Myocardial Infarction, Nonfatal 25-44 
Peters et al. 2001 Acute Myocardial Infarction, Nonfatal 45-54 
Peters et al. 2001 Acute Myocardial Infarction, Nonfatal 55-64 
Peters et al. 2001 Acute Myocardial Infarction, Nonfatal 65-99 
Di 2017 Mortality, All Cause 65-99 
Turner 2016 Mortality, All Cause 30-99 
Lepeule et al. 2012 Mortality, All Cause 25-99 

                                                      
7 The USEPA BenMAP-CE configuration, pooling and valuation setup can be found here: https://www.epa.gov/benmap/benmap-community-edition 

Select the U.S. EPA approach for quantifying and valuing PM effects to download the cfgx and apvx BenMAP-CE files, or use this link: 

https://www.epa.gov/sites/production/files/2017-07/pm_cfgx_apvx_files_0.zip  

https://www.epa.gov/benmap/benmap-community-edition
https://www.epa.gov/sites/production/files/2017-07/pm_cfgx_apvx_files_0.zip
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AUTHOR YEAR ENDPOINT GROUP AGE RANGE 

Kloog et al. 2012 Incidence, Stroke 65-99 
Khreis et al. 2017 Incidence, Asthma 0-17 
Young et al. 2014 Incidence, Asthma 35-64 

(Female only) 
Young et al. 2014 Incidence, Asthma 65-99 

(Female only) 
Sun et al. 2016 Term Low Birth Weight 0-99 

(Female only) 

Low Birth  Weight 

Researchers have developed an extensive literature studying the potential impacts of PM2.5 exposures to 
pregnant women on a variety of pregnancy outcomes, including low birth weight (LBW), defined as a 
singleton birth weighing less than 2500 g. The most recent Integrated Science Assessment for 
PM2.5 prepared by EPA (2019) classifies the evidence of PM2.5 impacts on pregnancy and birth outcomes 
as suggestive but insufficient to infer a relationship, though the authors cite “strong supporting evidence 
from low birth weight [studies].” Among other issues, the ISA document cites concerns over uncertainties 
in exposure assessment, key exposure windows, and limited data on the biological mechanism of these 
effects. However, a number of meta-analyses have been conducted over the past decade (e.g., Sun et al., 
2016; Dadvand et al., 2013, Sapkota et al., 2012) that attempt to control for methodological differences 
such as exposure assessment, and several of these have found overall positive associations between 
PM2.5 exposure at any time during pregnancy and LBW.  Some researchers including Perera (2019) have 
advocated including LBW as a PM2.5-related endpoint in benefits analyses involving impacts on 
children’s health (2020). Given the higher level of uncertainty related to this endpoint, we do not include 
these results as part of our primary analysis, but include consideration of the LBW endpoint as reflective 
of potential uncertainty in the PM2.5 health burden. We developed a health impact function for this 
endpoint based on the results of the Sun et al., 2016 meta-analysis.  

VALUATION 

We value mortality using the value per statistical life (VSL) estimate used by USEPA and included in the 
BenMAP-CE program. Mirroring the concentration-response functions, we value the morbidity endpoints 
using a subset of the USEPA standard valuation functions that are considered to be ‘core’ valuation 
functions used in USEPA regulatory analyses. We subset the standard functions using the .apvx 
BenMAP-CE configuration files available on the USEPA website.4 To limit the results, we opt for 
valuation estimates with a three percent discount rate (excluding seven percent values). We further apply 
a three percent discount rate to mortality valuation (multiplier of 0.90606) to reflect EPA’s cessation lag 
methodology. For VSL and other willingness to pay estimates, we further apply BenMAP-CE’s default 
income growth adjustments for the relevant years (through 2015 for the burden analyses, through 2026—
the last projection year in BenMAP-CE—for the Section 177 analyses). 

For the three incidence endpoints which do not have a corresponding valuation functions within 
BenMAP-CE (new onset asthma, stroke incidence, and LBW), we derive cost-of-illness and/or 
willingness-to-pay estimates from the available literature. Exhibit C-2 details the economic values 
corresponding to each endpoint (not yet adjusted for income growth). 
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EXHIBIT C-2.  VALUATION FUNCTIONS 

HEALTH ENDPOINT GROUP AGE RANGE 
VALUATION, COST PER CASE 

(2015$) 

Mortality, All Cause 0-99 $8,705,114 
Acute Bronchitis 0-17 $490 
Acute Myocardial Infarction, Nonfatal 
3% Discount Rate (Russell 1998) 

0-24 
$38,253 

Acute Myocardial Infarction, Nonfatal 
3% Discount Rate (Russell 1998) 

25-44 
$38,253 

Acute Myocardial Infarction, Nonfatal 
3% Discount Rate (Russell 1998) 

45-54 
$38,253 

Acute Myocardial Infarction, Nonfatal 
3% Discount Rate (Russell 1998) 

55-64 
$38,253 

Acute Myocardial Infarction, Nonfatal 
3% Discount Rate (Russell 1998) 

65-99 
$38,253 

Acute Myocardial Infarction, Nonfatal 
3% Discount Rate (Wittels 1990) 

0-24 
$187,530 

Acute Myocardial Infarction, Nonfatal 
3% Discount Rate (Wittels 1990) 

25-44 
$187,530 

Acute Myocardial Infarction, Nonfatal 
3% Discount Rate (Wittels 1990) 

45-54 
$187,530 

Acute Myocardial Infarction, Nonfatal 
3% Discount Rate (Wittels 1990) 

55-64 
$187,530 

Acute Myocardial Infarction, Nonfatal 
3% Discount Rate (Wittels 1990) 

65-99 
$187,530 

Minor Restricted Activity Days 18-99 $70 
Asthma Exacerbation 0-17 $59 
Emergency Room Visits, Asthma 0-99 $534 
Emergency Room Visits, Asthma 0-99 $447 
Hospital Admissions, Asthma 0-64 $16,655 
Hospital Admissions, All Respiratory 65-99 $35,402 
Hospital Admissions, Chronic Lung Disease 18-64 $21,989 
Lower Respiratory Symptoms 0-17 $21 
Hospital Admissions, All Cardiovascular 18-64 $45,659 
Hospital Admissions, All Cardiovascular 65-99 $42,642 
Upper Respiratory Symptoms 0-17 $34 
Work Loss Days 18-65 *Calculated using median 

income & wage index 
Incidence, Stroke 18-99 $33,962 
Incidence, Asthma 0-12 $17,629 
Incidence, Asthma 4-21 $16,425 
Incidence, Asthma 35-99 $16,741 
Term Low Birth Weight 0-1 $15,560 
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APPENDIX D. ADDITIONAL RESULTS 

This brief appendix includes a table of ZEV program benefits assuming no passage of the Clean Economy 
Act (CEA). These results are similar in magnitude to the with-CEA results presented in the main text and 
are presented in Exhibit D-1 below. 

EXHIBIT D-1.  2035 BENEFITS OF ZERO EMISSION VEHICLE PROGRAM ADOPTION, WITHOUT CLEAN 

ECONOMY ACT 

HEALTH ENDPOINT CHANGE IN ANNUAL INCIDENCE 
VALUATION 

(USD 2015$) 

Mortality 

Estimate 1 (Lepeule et al. 2012) 16 $150,000,000 

Estimate 2 (Di et al. 2017) 7.4 $70,000,000 

Estimate 3 (Turner et al. 2016) 7.1 $67,000,000 

Mean estimate 10 $96,000,000 

Morbidity effects 

Hospitalizations, cardiovascular 1.7 $74,000 

Hospitalizations, respiratory 1.8 $54,000 

Emergency room visits, asthma 3.4 $1,700 

Stroke 0.36 $12,000 

Low birth weight* 1.1 $17,000 

New onset asthma 17 $730,000 

Exacerbated asthma 200 $13,000 

Acute bronchitis 8.0 $4,200 

Upper respiratory symptoms 150 $5,300 

Lower respiratory symptoms 100 $2,300 

Lost work days 740 $150,000 

Minor restricted activity days 4,300 $320,000 

Acute myocardial infarction (non-fatal) 6.4 $880,000 

Total $99,000,000 

* USEPA finds evidence of PM2.5 related birth outcomes to be suggestive, but not sufficient to infer a causal relationship at this 
time. 
See Exhibit 2 for notes on each health endpoint. 
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